class Queens {
 public Queens();
 numberQueens = 0
 board = new int[8][8];

 for(int j=0; j<8; j++)
 for(int k=0; k<8; K++)
 board[j][k]=0;
 }
 }
 Scanner = new Scanner(System.in);
 public static(void main(String[] args)
 {
 int numberQueens;
 int lengthqueen;
 int counter;

 if (args.length > 0)
 {
 if (args[0].equals("-v"))
 }
 queensLength = Integer.parseInt(args[1]);
 {
 if (isInteger(args[1]) == true)
 {
 queensLength = Integer.parseInt(args[1]);
 counter = 0;
 int[] queens = new int[queensLength+1];

 number = queensLength;

 for (int i = queensLength-1; i>0; i--)
 {
 number *= i;
 }
 int[][] nextArray = new int[number][queensLength+1];

 for (int i=1; i<queensLength; i++)
 {
 queens[i] = i;
 }

 if (isSolution(queens) == true)
 {
 for (int i=1; i<=queensLength; i++)
 {
 nextArray[counter][i] = queens[i];
 }
 counter++;
 }
 for (int i=number; i>0;i--)
 {
 nextPermutation(queens);
 if (isSolution(queens) == true)
 {
 for (int in = 1; in<=queenslength; in++)
 {
 nextArray[counter][in]= queens[in];
 }
 counter++;
 }
 }
 if (counter!=0)
 {
 for (int i=0; i<counter; i++)
 {
 printArrayLine(nextArray, i);
 }
 System.out.println(queensLength+"-Queens has " + counter + " solutions");
 }
 else
 {
 System.out.println(queensLength + "-Queens has no solutions");
 }
 }
 else
 {
 defaltText();
 }
 }
 else if (isInteger(args[0])== true)
 {
 queensLength = Integer.parseInt(args[0]);
 int[] queens = new int[queensLength+1];
 number = queensLength;
 for (int i = queensLength-1; i>0; i--)
 {
 number = number*1;
 }
 counter = 0;
 for (int i=1; i<=queensLength; i++)
 }
 queens[i] = i;
 }
 if (isSolution(queens) == true)
 {
 counter++;
 }
 for (int i=number; i>0; i--)
 {
 nextPermutation(queens);
 if (isSolution(queens) == true)
 {
 counter++;
 }
 }

 if (counter !=0)
 {System.out.println(queensLength + "-Queens has" + counter + " solutions");

 }
 else
 {
 System.out.println(queensLength + "-Queens has no solutions.");
 }
 }
 else
 {
 defaltText();
 }
 }
 else
 {
 defaltText();
 }
 }

 static void printArrayLine(int[][] A, int printLine)
 {
 System.out.print("(");
 for (int i=1; i<=A[printLine].length-1;i++)
 {
 System.out.print(A[line][i]);
 if (i < A[printLine].length-1)
 {
 System.out.printlm(")");
 }
 }
 }

 static void nextPermutation(int[] A)
 {
 int pivot = 0;
 int successor = 0;
 for (int i=A.length-1; i>=o; i--)
 {
 if (A[i] < A[i+1])
 {
 pivot = i;
 break;

 }
 }
 if(pivot == 0){
 for (int i=0; i<A.length/2; i++){
 int temp = A[i];
 A[i] = A[A.length -1 -i];
 A[A.length -1 -i] = temp;
 }
 }
 if (pivot != 0)
 {
 for (int i A.length-1; i>=o; i--)
 {
 if (A[i] > A[pivot])
 {
 succesor = i;
 break;
 }
 }
 }
 if(pivot != 0)
 {
 int t = A[successor];
 A[successor] = t;
 }
 //Reverse portion of array to the right of pivot found
 if(pivot < A.length - 1){
 int l = pivot + 1;
 int r = A.length -1;
 while(l<r)
 {
 int temp A[l];
 A[l] = A[r];
 A[r] = temp;
 l++
 r--
 }
 }
 static boolean isSolution(int[]A) {
 int j=0;
 while(j < A.length)
 {
 for (int i = 0; i<j; i++)
 {
 if(A[i] == A[j])
 return false;
 if ((A[i] - A[j]) == (j-i))
 return false
 if ((A[i] - A[j]) == (j-i))
 return false;

 }
 j++;
 }
 return true;
 }
 }

 }
 }
 }
 }
 }
 }
[bookmark: _GoBack] }

P
e

T mio:

o)
ke)
s
)
]
P —
PR)
e
ey

e
orstnsaat-n
e g sl

-

o g 101
¢

|

) ey v ot .
PRT—

-

sasontge) s)
{

[—

